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1. Statement of Problem. 
 

One of the earliest proposals [1] for implementing quantum computation was based on encoding each qubit 
in two optical modes, each containing exactly one photon.  However it is extremely difficult to unitarily couple 
two optical modes containing few photons.  In 2001 Knill, Laflamme and Milburn (KLM) found a way to 
circumvent this restriction and implement efficient quantum computation using only passive linear optics, 
photodetectors, and single photon sources [2]. This efficient linear optical quantum computing (LOQC) is 
distinct from other linear optical schemes [3] that are not efficiently scalable. 

The technological requirements for even the simplest gates in the KLM proposal initially seemed out of 
reach. However, Ralph, White, Munro and Milburn [4] soon showed that in principle demonstrations of key 
gates and techniques could be achieved with current technology.  

The objective of the research undertaken in this project was to produce, in three years, a prototype two qubit 
gate for photons using the KLM linear optics quantum computation approach, and to develop a blue-print for a 
multiple qubit device that might be implemented over a longer time scale. A non-deterministic two qubit gate 
was demonstrated that operates with high fidelity. A number of key tasks were demonstrated using this gate. 
Several theoretical investigations of short, medium and longer term issues for the LOQC approach were 
successfully completed. 
 
2. Summary of Key Results. 
 
Demonstration of an Entangling 2 Qubit Gate: 
 
We constructed and observed the quantum operation of an LOQC Controlled-NOT (CNOT) gate. The gate was 
based on our theoretical proposal [“Quantum optical CNOT gate”, T.C.Ralph, PCT/AU02/01115 (2001), T. C. 
Ralph, N. K. Langford, T. B. Bell and A. G. White, Physical Review A 65, 062324 (2002)]. It was constructed 
as shown schematically in Fig.1. Key design features are: the use of polarization displacers to produce a stable 
interferometric arrangement and the use of wave-plates to produce beam mixing in a precise ratio. 
 

Measurement Value 

Output fidelity for input state 00 97% 

Output fidelity for input state 01 98% 

Output fidelity for input state 10 89% 

Output fidelity for input state 11 90% 

Average gate fidelity for truth table 93.5%  

Average gate fidelity over 71 input states 95%  
 
Table 1. Summary of data from optical CNOT gate.  
 
The operation of the gate is non-deterministic but unambiguously quantum. This was determined by measuring 
the output density matrices for the logical-input data (i.e. the 00, 01, 10, 11 inputs), and, more significantly, for 
superposition inputs - in the latter case the outputs are entangled. We measured both the fidelity of the output 
states with the ideal expected Bell-state outputs (e.g. 92% for the singlet state |01〉-|10〉) and the tangle and 
linear entropy of the output states (respectively 79% (100% optimum) and 16% (0% optimum) also for the 



singlet). See table 1 for a summary. This work was published as J.L.O’Brien, G.J.Pryde, A.G.White, T.C.Ralph 
and D.Branning, Nature 426, 264 (2003). 
 

                      
Fig. 1 A schematic of the CNOT gate. (a) A conceptual depiction of the gate, as described in previous reports. A sign 
change (π phase shift) occurs upon reflection off the green side of the beamsplitters (b) A polarisation encoded photonic 
qubit can be converted into a spatially encoded qubit, suitable for the gate shown in (a), using a polarising beamsplitter 
and a half wave plate set to rotate the polarisation of one of the outputs by 900 (optic axis at 450). The rotation is required 
so that all components of the spatial qubits have the same polarisation and can interfere both classically and non-
classically. The reverse process converts the spatial encoding back to polarisation encoding. (c) A schematic of the 
experimental CNOT gate. Pairs of energy degenerate photons are incident from the left of the diagram. These were 
generated through beam-like spontaneous parametric downconversion and collected into single mode optical fibres (as 
described in previous reports). The output of each fiber is collimated and a HWP and QWP in each input beam allows 
preparation of any pure, separable two qubit state to be input into the gate. The horizontal and vertical components of the 
qubits are separated and recombined using PBS made from the birefringent material calcite, where the output modes are 
parallel and displaced. This interferometer is inherently stable, being insensitive to translation of the PBSs. The two 
outputs are polarisation analysed using an automated tomography system consisting of a computer controlled HWP and 
QWP followed by a PBS in front of each single photon counting module (SPCM). Simultaneous detection of a single 
photon at each of the detectors - a coincidence count - signals that the gate has worked. A coincidence window of 5 ns 
was used throughout. 
 
Demonstration of Quantum Non-demolition Measurements of Optical Qubits: 
 
The CNOT gate, as well as being a key processing device in quantum computation, is also a key measurement 
device. At the simplest level it allows an ideal projective or quantum non-demolition (QND) measurement to be 
made on a single qubit. This is achieved by preparing the target input to the CNOT in a particular computational 
basis state and then measuring its value after the gate. The target acts as a “meter” to measure the value of the 
control qubit (which is referred to as the “signal”). If the meter is found to be in the same state as prepared then 
the signal has been measured to be “0”. If the meter is found in the opposite state then the signal has been 
measured to be “1”. The signal photon has not been destroyed by the measurement, but instead has been 
projected into the state corresponding to the measurement result. We adapted our two photon CNOT gate to 
perform this type of measurement. The conceptual arrangement is shown in Figure 2 and the experimental 
results are summarized in Table 2.  
 
We introduced generalizations of the standard QND criteria [5] in order to characterize the performance of the 
measurements. The measures address the issues of: measurement accuracy; signal preservation and; signal 



meter correlation, in terms of classical measurement fidelities. Our technique performs well against all these 
measures with fidelities ranging between ~80-100%. 
 
Although closely related to our CNOT gate, there are a couple of distinct features of the QND gate which we 
highlight:  
(i) Because the target (meter) is in a known state, the loss present in the target arm for the full CNOT can be 
avoided thus enhancing the success probability of the gate from 1/9 to 1/6 (when signal loss is included) or on 
average 1/3 if the signal loss is not included. The removal of the target (and signal) loss is achieved 
experimentally by inserting additional wave-plates between the beam displacers that form the gate. 
(ii) Like the CNOT gate the QND measurement is non-deterministic. Unlike the general operation of the CNOT 
gate, the QND measurement produces a free propagating signal qubit photon when successful, so in principle 
the measurement works outside the realm of coincidence detection. However, in practice the lack of high 
efficiency photon number resolving detectors and high efficiency sources means our demonstration presently 
still relies on coincidence detection. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2: Conceptual layout of the QND device. The signal input is labelled s and the meter input is labelled m. The central 
beamsplitter has reflectivity η = 1/3. In principle, detection of a single photon at the meter output indicates success, with 
the measurement result given by the detector triggered (H or V). In practice, coincidence detection is needed to overcome 
detection and source inefficiency. The 2/3 beamsplitter can be added to equalize the probability of a successful 
measurement for all inputs. 
   

Signal input       |H>s     |V>s     |D+>s    |R+>s 
       PHH 0.97 0.012 0.44 0.46 
       PHV 0.024 0.00013 0.016 0.022 
       PVH 0.007 0.18 0.10 0.104 
       PVV 0.0005 0.81 0.44 0.41 

 
Table 2: Probabilities, PIJ, of obtaining signal measurement result “I” if meter is found in “J” for various signal states. 
 
Our measurement device can be simply modified so that the strength of the measurement is smoothly varied 
from weak to strong. This is an example of a generalized measurement and demonstrates that the QND 
measurement is coherent (a key requirement for quantum computation applications). We achieve this by 
changing the state of the meter input. If the meter is prepared in the diagonal state then the meter measurements 
are completely uncorrelated with the signal state and no measurement is performed. On the other hand, as we 
have seen, if the meter is prepared in H (say) then a strong QND measurement is performed. By varying the 
meter input between these two extremes a measurement of arbitrary strength can be performed. It can be shown 
that in principle this is an ideal measurement in the sense that only the minimum level of decoherence consistent 



with the knowledge obtained from the measurement result is introduced. We have tested this operating mode of 
our device experimentally by injecting the signal in the diagonal state, weakly to strongly measuring the path 
taken by the photon through the signal interferometer (see Figure 3), and then measuring the decoherence 
induced on the signal as quantified by its visibility. This is a strong test of the complementarity of wave-particle 
duality. In Figure 3 we plot the trade off between path knowledge and output visibility as measured in our 
experiment as a function of increasing QND measurement strength. The visibility squared and knowledge 
squared would ideally sum to 1 [6]. This work was published as G.J.Pryde, J.L.O’Brien, A.G.White, 
S.D.Bartlett and T.C.Ralph, Phys. Rev. Lett. 92, 190402 (2004). 
 

 
Fig 3: Plot of which-path knowledge (K), signal output visibility (V) and the sum of their squares as a function of meter 
input polarization. An ideal generalized QND measurement would achieve K2+V2=1 for all angles. The dotted lines are 
guides for the eye. 
 
Quantum Process Tomography: 
 
A key, and commonly overlooked, aspect of quantum gate demonstrations is the complete characterization of 
the gate performance. We have fully characterized our two-photon CNOT gate using quantum process 
tomography (QPT) and, as a result, investigated some important principles of characterizing real-world 
quantum circuits.  
 
A complete and unique description of a quantum circuit - a process (or χ) matrix, can be obtained by QPT [7]. 
For a two qubit circuit, such as our CNOT gate, this requires measurements with 256 combinations of input and 
analyser settings.  We address a significant, but less well known, problem in QPT experiments: that the naive 
matrix inversion procedure, when performed on real (i.e., inherently noisy) experimental data, typically leads to 
an unphysical process matrix, making its predictive power questionable. The generation of a maximum-
likelihood process matrix from noisy data not only requires a least-squares fit to a parametrized Hermitian 



matrix, but also incorporation of sixteen extra constraints that ensure that the process is represented by a 
completely positive map - one that generates valid output density matrices regardless of whether or not the 
qubits are entangled to anything in their environment. Our implementation of QPT is the first full 
characterization of a two-qubit entangling gate, and the first demonstration of any experimental tomography 
that explicitly takes into account the complete positivity of the map that the process matrix represents. 
 
The process matrix of our CNOT gate is shown in Figure 4, along with that of an ideal CNOT. The main 
deviation from ideal CNOT behaviour is observed in the population of the I! I element, which is much larger 
than the ideal. Because of imperfect mode matching in the circuit, the gate sometimes fails to implement the 
CNOT transformation. Fortunately imperfect mode matching is not a fundamental issue and should be 
addressable in the medium term using guided wave techniques. 
 
From the process tomography we are able to extract the "process fidelity", a quantity from which various 
measures of the gate performance can be determined, such as the average gate fidelity, which is 0.90 for our 
gate. It is not practically possible to obtain error estimates on the process fidelity when calculated from the 
process matrix, due to the many-parameter numerical minimization. However, we have found a means of using 
a 71-element subset of the tomographic data to directly calculate the process fidelity and error. This yields a 
value for the average gate fidelity of 0.95 ± 0.01, where the main source of error is assumed to be from 
Poissonian counting statistics. 
 

   (a)           (b)  
Fig 4. (a) Maximum-likelihood real part, and (b) maximum-likelihood imaginary part of the process matrix for our CNOT 
gate, corresponding to a decomposition of the process in the Pauli basis. The numbers on the x & y axes label the sixteen 
ordered pairwise combinations of the Pauli operators, {I, X, Y, Z}! {I, X, Y, Z}. 
 
Of course, one of the main uses of a physical process matrix is its use in predicting the operation of the gate for 
various input states. This enables all sorts of investigations of the gate properties, including the entangling 
power of the gate and its mixture. In Figure 5, we show scatter plots of the gate (state) fidelity and change in 
tangle vs. added mixture for a large number of pure input states uniformly distributed over the state space. It is 
important to note that predictions of this sort are only meaningful if the process matrix predicts physical output 
states. This work was published as J. L. O'Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford, T. 
C. Ralph, and A. G. White, Phys. Rev. Lett. 93, 080502 (2004). An alternative method for obtaining a physical 
process matrix by first modelling the gate in a higher dimensional Hilbert space has been described in 
“Quantum Gate Characterization in an Extended Hilbert Space”, P.P.Rohde, G.J.Pryde, J.L.O’Brien and 
T.C.Ralph, submitted to Phys.Rev.Lett. quant-ph/0411144 (2004). 
 



 

        
Fig 5. (a) State fidelity of our CNOT gate outputs (with ideal CNOT output states) calculated from the process matrix, 
plotted against the linear entropy added by the gate. A perfect experimental CNOT process would have F=1, S=0 for all 
states. (b) Change in tangle between input and output, and linear entropy added, for our CNOT gate outputs, calculated 
from the process matrix. An ideal CNOT would have points distributed between -1 and 1 on the y axis, and S=0. For both 
plots, the gate inputs were ~200,000 pure states uniformly distributed in the state space. 
 
Z-Measurement Error Correction: 
 
Quantum error correction works by encoding the quantum information over a number of physical qubits in such 
a way that measurements of the qubits can extract information about errors without destroying the fragile 
quantum information. If the frequency of errors is below some fault tolerant threshold [8] then errors will not 
propagate, making large scale quantum computation possible in principle. As such, the ability to do high fidelity 
error correction is a key requirement. 
 
A simple error correction code is the one introduced by Knill, Laflamme and Milburn (KLM) [3] to protect 
against computational basis measurements (Z-measurements) of the qubits. A logical qubit can be encoded 
across 2 physical qubits as  
 
                   α |0〉L + β |1〉L = α (|0〉 |0〉 + |1〉 |1〉) + β (|0〉 |1〉 + |1〉 |0〉).                 Eq.(1) 
 
This is a parity encoding. The zero state is represented by all the even parity combinations of the 2 qubits whilst 
the one state is represented by all the odd parity combinations. Similarly a logical qubit can be encoded across n 
qubits by representing logical zero by all the even parity combinations of the n qubits and logical one by all the 
odd parity combinations. Notice that if a Z-measurement is made on either of the physical qubits of the state in 
Eq.1 and the result “0” is obtained, then the state collapses to an unencoded qubit, however the superposition is 
preserved. Similarly if the measurement result is “1” a bit-flipped version of the unencoded qubit is the result, 
but again the superposition is preserved so the qubit can be recovered. If the logical qubit is encoded across n 
physical qubits then a Z-measurement on any one of the qubits reduces the state to a logical qubit encoded 
across (n-1) physical qubits, but once again the superposition is preserved.  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6: Density matrixes for the encoded states obtained when the initial states: (a) |0〉; (b) |0〉 + |1〉 and; (c) |0〉 + i |1〉 are 
inserted. The average fidelity with the expected states is 88%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7: One qubit decoded state fidelities for the input states cos θ |0〉 + sin θ |1〉 and |0〉 + exp[i(90o – 2φ)] |1〉. 
 



This type of error correction is a key tool in the scale up strategy for LOQC circuits. KLM showed that the non-
deterministic teleported CNOT gate they introduced [3] (or equivalently the Pittman et al CNOT gate [9]) failed 
by performing a Z-measurement on one of the qubits. Thus by using this encoding technique the qubits can be 
protected against gate failures and hence the effective success rate of gate operations can be boosted [10]. A 
similar principle underlies LOQC schemes based on cluster states [11,12] where again the cluster state structure 
is not destroyed by accidental Z-measurements. Parity encoding also forms the basis of encoding schemes 
against photon loss. Because of this key role it is of considerable importance to show that qubit states can be 
encoded and recovered after Z-measurements with high fidelity. 
 
We have used our two photon CNOT gate to make such a demonstration. The encoded state is produced by 
using the qubit as the target input for the CNOT gate and an equal superposition state as the control. State 
tomography of the resulting encoded states for various input qubits are shown in Figure 6. The average fidelity 
between these output states and the ideal encoded states (as given by Eq.1) is 88%. We then decode the states 
by measuring either of the encoded qubits in the computational basis and then performing state tomography on 
the remaining qubit to observe how accurately we have recovered the original qubit. We do not optically correct 
for the bit flips detected by the error syndrome measurement. The results for a large range of initial qubits are 
shown in Figure 7. The average fidelity of the reconstructed qubit with the original qubit (or its bit flip for the 
case of a “1” measurement result) is 96%. This work has been submitted for publication as “High-Fidelity Z-
Measurement Error Correction of Optical Qubits”, J.L.O'Brien, G.J.Pryde, A.G.White, T.C.Ralph, submitted to 
Phys.Rev.Lett. (2004). 
 
Blueprints for Large Scale Processors 
 
The original KLM scheme provided a blueprint for scale-up from the basic non-deterministic gates which have 
been the subject of our in principle demonstrations, to efficient multi-qubit quantum processing. However the 
overheads in terms of single photon sources and feed-forward are seemingly prohibitively large in the original 
scheme. We have described two alternatives to the original scheme, which have significantly reduced 
overheads. 
 
We have considered a variation on the original KLM proposal that uses an incremental (as opposed to 
concatenation) approach to the encoding against teleportation errors. A key technique in this approach is to use 
re-encoding to achieve operations on the logical qubits, thus making large savings in over-heads. This approach 
has a number of parallels with the cluster state approach [10] and cross-fertilization between the two is proving 
very fruitful. This work has been published as A.J.F.Hayes, A.Gilchrist, C.R.Myers, T.C.Ralph, J. Opt. B: 
Quantum Semiclass. Opt. 6, 533 (2004). 
 
A quite different approach is to consider encoding qubits on multi-photon coherent states of light. A linear 
optics quantum computation scheme based on such an encoding was described by Ralph, Munro and Milburn 
[13]. The original scheme required prohibitively large superposition states (cat states) as a resource however we 
have shown that this problem can be avoided such that only “small” superposition states (~4 photons on 
average) are needed. The relaxation of the need for “large” coherent amplitudes is achieved using a number of 
new teleportation techniques. We also show that the error correction structure for coherent qubits has desirable 
properties. This work was published as T.C.Ralph, A.Gilchrist, G.J.Milburn, W.J.Munro and S.Glancy, Phys. 
Rev. A 68, 042319 (2003). 
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